
WHITEPAPERS

How to Design Enterprise-Grade AI &
Analytics Infrastructure

https://www.gooddata.com/resources/tags/whitepapers/

Artificial intelligence is reshaping enterprise analytics. But beneath

the hype, real adoption is struggling to scale beyond prototypes.

What holds AI back isn’t raw capability, it’s architecture. Most

systems are glued together with opaque models, brittle logic, and

zero accountability.

Who Is This Whitepaper For?

This whitepaper is for analytics teams that want to apply AI in the

most effective way. It lays out the core infrastructure, principles, and

features required for a modern enterprise AI system that is

explainable, governable, and future-proof. Our goal is to o�er
clarity: What does "enterprise-ready" actually mean in an AI
world? And how can you get there?

What "Enterprise-Ready AI Infrastructure"
Really Means

AI adoption at scale doesn’t just require powerful models, it also

requires underlying systems designed for security, governance, and

adaptability.

Modern enterprise AI must be:

Composable: Built for plug-and-play across data systems,

models, and interfaces.

Governed: Enforced through policies, semantic modeling, and

lineage-aware infrastructure.

Business-Aligned: Trained and aligned to business terms and

logic.

Private-by-Design: Designed to function without raw data

leaving trusted environments.

Future-Oriented: Prepared for agentic automation, not only able

to generate insights, and vendor-neutral.

The Modern AI Stack: 7 Core Layers

The following reference architecture synthesizes implementation

patterns from enterprise-grade deployments. It aligns with Gartner’s

guidance on composable analytics, AI governance (TRiSM), and

enterprise AI maturity.

Each layer is essential to building AI systems that are secure,
explainable, and production-ready.

1. Data Input & Preprocessing

Ingestion pipelines normalize data from warehouses, APIs, and

transactional systems. Entity recognition, normalization, and

metadata tagging are applied early.

Why it Matters: Without unified and trustworthy input data,

downstream models will fail, regardless of their quality.

What to Look For:

Technical Principles

Support for diverse data sources (warehouse, SaaS, event

streams)

Metadata tagging and lineage capture on ingest

Entity recognition and normalization at the edge

Observability of ingestion flows (logs, retries, error reporting)

Streaming and batch ingestion separation

Metadata capture via schema registry or sidecar

Preprocessing hooks for NLP-aware tokenization

2. Semantic Layer & Ontology

Logical Data Models (LDMs) define business entities (e.g., Customer,

Revenue). Ontologies enrich this with synonyms, units, and

taxonomies, translating natural language into queryable context.

Why it Matters: AI needs structured understanding; this layer

translates business concepts into machine-readable logic.

What to Look For:

Technical Principles

3. Prompt Engineering Pipeline

Prompt templates are customized based on the task type and the

target model. At this stage, business logic, filters, and access rules

are injected directly into the prompt. The system also enforces token

limits, escapes special characters, and validates the final prompt

before sending it to the model.

Why it Matters: This layer ensures every AI request is grounded in

context, access, and formatting, and routes it reliably to the right

model.

LDM support with reusable metrics and entities

Ontology mapping to domain-specific terms

Semantic constraints (units, types, ranges)

Metadata tagging tied to access governance

Entity-relationship abstraction with inheritance

Hierarchical term expansion and synonym resolution

Versioned semantic models

What to Look For:

Technical Principles

4. Model Orchestration Layer

This layer routes prompts to the right model based on use case,

latency, security, and cost. It supports LLMs (e.g., GPT-4o), SLMs

(e.g., Claude Instant), and classic ML (e.g., XGBoost).

Why it Matters: You need the right model for the right job, as well as

rules to switch between them safely.

What to Look For:

Prompt templates by task type

Metadata injection (filters, access, role)

Error handling and fallback logic

Multi-model prompt compatibility

Token budgeting strategies

Prompt template versioning and testing

Prompt-response fingerprinting (for caching, security)

Rule-based model routing

Support for hybrid chains

Model class fallback support (LLM → SLM → ML)

Model performance observability

Technical Principles

5. Execution & Interaction Layer

Handles UI and API-level interactions. Includes web chat, Slack, app

widgets, and SDKs. Delivers answers, dashboards, and visualizations.

Why it Matters: This is where users experience AI (via UI, SDK, API,

or chat) and where results must be fast, usable, and explainable.

What to Look For:

Technical Principles

Model Abstraction Layer

Routing Decision Graph

Usage-based routing triggers

NLQ interface support

Headless SDK/API mode

Embedded visual/chart generation

User session tracking

Stateless vs session-based context handling

UI-to-prompt mapping patterns

UX latency budgeting (sub-second delivery)

6. Governance & Observability

Tracks, logs, and audits all prompt activity. Includes template

versioning, session-level logging, and compliance traceability.

Why it Matters: Trust and scale require transparency. Without

governance, AI outputs can’t be validated or trusted.

What to Look For:

Technical Principles

7. Deployment Infrastructure

Containerized for flexible scale (e.g., Kubernetes), supports BYOM

(bring your own model), and enforces tenant isolation for multi-user

environments.

Why it Matters: Flexibility, isolation, and performance all hinge on

modern infrastructure that’s cloud-ready and secure by default.

What to Look For:

Full prompt + response logging

Audit trails and revision history

Governance dashboards

Versioning for models, prompts, configs

GitOps-based governance flows

Metadata logging schema (user, prompt, model, output)

Drift and anomaly detection in model outputs

Workspace-level isolation

Technical Principles

Building Trust at Scale: The Governance
Checklist

We have already covered governance as a technical layer, including

logging, versioning, and auditability. But building trust in AI systems

doesn’t stop with infrastructure. Enterprise-ready AI must
operationalize governance across roles, risk, and real-world
use.

This section outlines what that looks like in practice and why it’s

essential.

1. Align Governance to the Full Lifecycle

Governance doesn’t have a quick fix. It’s a framework that spans

every phase of your AI stack:

BYOM with API override

K8s-compatible container design

Deployment observability

Ephemeral runtime contexts per workspace

Agent sandboxing and audit fencing

Configurable tenant-specific routes

People and roles — Who owns prompt design, model validation,

and access control?

Policies and workflows — Are prompts and models audited,

approved, and version-controlled?

This mirrors Gartner’s guidance on TRiSM (Trust, Risk, and Security

Management), emphasizing governance as a continuous discipline

rather than just checking a compliance box.

2. Make Every Step Explainable

Trust starts with transparency. From question to output, every

decision in the pipeline should be inspectable.

For example, a well-instrumented system might log the following

metadata:

{

 "user_input": "Why did Q1 revenue drop in APAC?",

 "applied_prompt_template": "{metric} breakdown by

{region} and {quarter}",

 "selected_model": "gpt-4o",

 "data_source": "Revenue_KPI_Definition_v2.json",

 "generated_output": "Q1 revenue in APAC fell 17% due

to underperformance in Japan and Australia."

}

This tracking enables debugging, downstream auditing, quality

assurance, and explainability for end users or compliance teams.

3. Monitor in Real-Time

It’s not enough to log history. You need visibility as the system runs.

This includes:

Release readiness — Are there promotion gates for prompts,

templates, and model updates?

Unique trace IDs across multi-step prompts

Session-level metadata (user, intent, model, context)

Compliance dashboards for retry rates, model fallbacks, and

redactions

4. Calibrate Risk to the Use Case

Not every insight needs the same level of oversight. Controls should

be aligned with context:

Risk Level Use Case Governance Requirement

Low Ad hoc search Logging only

Medium Business summaries Human review, template approval

High Regulatory/predictive outputs Full audit trail, approval flow

This helps scale governance without blocking innovation.

5. Plan for Ethical Risk and Bias

Unbiased data ≠ unbiased AI. Your governance stack should help flag

and address ethical risks:

Drift and anomaly detection for hallucinations or unexpected

outputs

Prompt traceability for identifying model bias

Model performance monitoring across user cohorts

Human-in-the-loop for sensitive decisions

Transparency into model selection logic (e.g., why GPT-4o vs

Claude)

The Bottom Line

Governance is not a barrier, it’s what makes AI safe to scale.

When done right:

If your AI system can’t explain how it arrived at a result, it can’t
be trusted. And if it can’t be trusted, it can’t scale, no matter how

powerful the model.

From Assistants to Agents: Architecting for
Evolution

Today, most enterprise AI begins with assistants: reactive tools that

answer questions in natural language. But tomorrow’s systems will be

agents: proactive collaborators that reason, plan, and act on behalf

of users.

This transition doesn’t require starting over. It requires infrastructure

that’s modular, governed, and context-aware, so assistants can

evolve into agents over time, without breaking trust or safety.

Why does this matter?

Agentic systems mark the shift from response to reasoning and

from generating answers to pursuing goals. That shift relies on

infrastructure, not just model size.

If your system can understand intent, maintain context, orchestrate

actions, and measure outcomes, you’re already halfway there.

Prompt review improves quality

Logs enable retraining and iteration

Audit trails unlock AI in regulated environments

Ethical controls protect teams and end users

What Agentic AI Needs

To operate as agents, AI systems require a modular architecture of key

components:

These functions enable multi-step reasoning, long-term goals, and

human-like adaptation.

Degrees of Autonomy

Like humans, agents grow into responsibility:

This mirrors Gartner’s agency maturity model and helps businesses

pace their own readiness.

Design Considerations

Before deploying agentic AI, teams must design for:

Perception — Ingest signals, queries, and events

Planner — Break down goals into task sequences

Executor — Trigger workflows, prompts, or APIs

Memory — Store interaction history and results

Evaluator — Score outputs based on utility, quality, or cost

1. Level: Guided chart generation

2. Level: Anomaly detection

3. Level: Explanation and pattern recognition

4. Level: Strategic simulation

5. Level: Autonomous action and remediation

Clear goal boundaries and escalation paths

You may not deploy a full agent today, but your architecture should

make that future possible.

How You Can Implement These Architectural
Pillars Today

Consider this whitepaper as your technical guide. The principles

outlined above offer a clear framework for evaluating AI platforms or

designing your own.

Remember, enterprise-grade AI must be able to explain its reasoning,

seamlessly integrate into your existing systems, and rigorously

protect your valuable data.

Real platforms, like GoodData AI, already demonstrate this
architecture with ontology-driven prompting, metadata-only LLM

interaction, a composable API-first stack, governance integration,

and deployment flexibility.

Human-in-the-loop failover points

Observability across planning, memory, and action

Sandboxed execution environments for testing safely

